Quasi-Invariance for Infinite-Dimensional Kolmogorov Diffusions
نویسندگان
چکیده
We prove Cameron-Martin type quasi-invariance results for the heat kernel measure of infinite-dimensional Kolmogorov and related diffusions. first study quantitative functional inequalities appropriate finite-dimensional approximations these diffusions, we hold with dimension-independent coefficients. Applying an approach developed by Baudoin, Driver, Gordina, Melcher previously, uniform bounds may then be used to that certain diffusions is quasi-invariant under changes initial state.
منابع مشابه
Quasi-invariance for Heat Kernel Measures on Sub-riemannian Infinite-dimensional Heisenberg Groups
We study heat kernel measures on sub-Riemannian infinitedimensional Heisenberg-like Lie groups. In particular, we show that Cameron-Martin type quasi-invariance results hold in this subelliptic setting and give L-estimates for the Radon-Nikodym derivatives. The main ingredient in our proof is a generalized curvature-dimension estimate which holds on approximating finite-dimensional projection g...
متن کاملinfinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولExponential Ergodicity and Raleigh-schrödinger Series for Infinite Dimensional Diffusions
, with η ∈ T d , where the coefficients ai, bi are finite range, bounded with bounded second order partial derivatives and the ellipticity assumption infi,η ai(η) > 0 is satisfied. We prove that whenever ν is an invariant measure for this diffusion satisfying the logarithmic Sobolev inequality, then the dynamics is exponentially ergodic in the uniform norm, and hence ν is the unique invariant m...
متن کاملFeedback invariance of SISO infinite-dimensional systems
We consider a linear single-input single-output system on a Hilbert space X , with infinitesimal generator A, bounded control element b, and bounded observation element c. We address the problem of finding the largest feedback invariant subspace of X that is in the space c⊥ perpendicular to c. If b is not in c⊥, we show this subspace is c⊥. If b is in c⊥, a number of situations may occur, depen...
متن کاملInfinite–dimensional Diffusions as Limits of Random Walks on Partitions
The present paper originated from our previous study of the problem of harmonic analysis on the infinite symmetric group S∞. This problem leads to a family {Pz} of probability measures, the z–measures, which depend on the complex parameter z ∈ C. The z–measures live on the Thoma simplex, an infinite–dimensional compact space Ω which is a kind of dual object to the group S∞. The aim of the paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Potential Analysis
سال: 2023
ISSN: ['1572-929X', '0926-2601']
DOI: https://doi.org/10.1007/s11118-023-10070-z